Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Nonlinear Model Predictive Control Strategy with a Disturbance Observer for Spark Ignition Engines with External EGR

2017-03-28
2017-01-0608
This research proposes a control system for Spark Ignition (SI) engines with external Exhaust Gas Recirculation (EGR) based on model predictive control and a disturbance observer. The proposed Economic Nonlinear Model Predictive Controller (E-NMPC) tries to minimize fuel consumption for a number of engine cycles into the future given an Indicated Mean Effective Pressure (IMEP) tracking reference and abnormal combustion constraints like knock and combustion variability. A nonlinear optimization problem is formulated and solved in real time using Sequential Quadratic Programming (SQP) to obtain the desired control actuator set-points. An Extended Kalman Filter (EKF) based observer is applied to estimate engine states, combining both air path and cylinder dynamics. The EKF engine state(s) observer is augmented with disturbance estimation to account for modeling errors and/or sensor/actuator offset.
Journal Article

Optical Engine Operation to Attain Piston Temperatures Representative of Metal Engine Conditions

2017-03-28
2017-01-0619
Piston temperature plays a major role in determining details of fuel spray vaporization, fuel film deposition and the resulting combustion in direct-injection engines. Due to different heat transfer properties that occur in optical and all-metal engines, it becomes an inevitable requirement to verify the piston temperatures in both engine configurations before carrying out optical engine studies. A novel Spot Infrared-based Temperature (SIR-T) technique was developed to measure the piston window temperature in an optical engine. Chromium spots of 200 nm thickness were vacuum-arc deposited at different locations on a sapphire window. An infrared (IR) camera was used to record the intensity of radiation emitted by the deposited spots. From a set of calibration experiments, a relation was established between the IR camera measurements of these spots and the surface temperature measured by a thermocouple.
Journal Article

Model-Based Optimal Combustion Phasing Control Strategy for Spark Ignition Engines

2016-04-05
2016-01-0818
Combustion phasing of Spark Ignition (SI) engines is traditionally regulated with map-based spark timing (SPKT) control. The calibration time and effort of this feed forward SPKT control strategy becomes less favorable as the number of engine control actuators increases. This paper proposes a model based combustion phasing control frame work. The feed forward control law is obtained by real time numerical optimization utilizing a high-fidelity combustion model that is based on flame entrainment theory. An optimization routine identifies the SPKT which phases the combustion close to the target without violating combustion constraints of knock and excessive cycle-by-cycle covariance of indicated mean effective pressure (COV of IMEP). Cylinder pressure sensors are utilized to enable feedback control of combustion phasing. An Extended Kalman Filter (EKF) is applied to reject sensor noise and combustion variation from the cylinder pressure signal.
Journal Article

A Real-Time Model for Spark Ignition Engine Combustion Phasing Prediction

2016-04-05
2016-01-0819
As engines are equipped with an increased number of control actuators to meet fuel economy targets they become more difficult to control and calibrate. The large number of control actuators encourages the investigation of physics-based control strategies to reduce calibration time and complexity. Of particular interest is spark timing control and calibration since it has a significant influence on engine efficiency, emissions, vibration and durability. Spark timing determination to achieve a desired combustion phasing is currently an empirical process that occurs during the calibration phase of engine development. This process utilizes a large number of stored surfaces and corrections to account for the wide range of operating environments and conditions that a given engine will experience. An obstacle to realizing feedforward physics-based combustion phasing control is the requirement for an accurate and fast combustion model.
Technical Paper

EGR Distribution in an Intake Manifold: Analysis, Dynamometer Correlation and Prediction

2020-04-14
2020-01-0840
Every passing year automotive engineers are challenged to attain higher fuel economy and improved emission targets. One widely used approach is to use Cooled Exhaust Gas Recirculation (CEGR) to meet these objectives. Apart from reducing emissions and improving fuel economy, CEGR also plays a significant role in knock mitigation in spark ignited gasoline engines. Generally, CEGR is introduced into the intake manifold in SI gasoline engine. Even though the benefits of using CEGR are significant, they can be easily negated by the uneven CEGR flow distribution between the cylinders, which can result in combustion instability. This paper describes the application of co-simulation between one and three dimensional tools to accurately predict the distribution of CEGR to the cylinders and the effect of its distribution on engine performance.
Technical Paper

An Intuitive Derivation of the Dual-Clutch Model for Clutch Shift Dynamics

2020-04-14
2020-01-0433
There are several commercial off-the-shelf software available to study transmission and driveline dynamics. Many of these software require a faithful representation of the transmission topology in order to carry out the analyses. These modeling techniques utilize several redundant degrees of freedom which may not be necessary for studying low frequency (< ~30 Hz) dynamics and may be computationally inefficient. The dual-clutch model has been proposed as a generic 2-DOF model that overcomes some of these drawbacks. In this paper, the dual-clutch model is initially derived from first principles, starting with the equations of motion for a planetary automatic transmission. The model coefficients - the inertia matrix and the matrix of clutch coefficients - are then derived using a more intuitive approach based on energy considerations.
Technical Paper

Air Induction Impact on Turbocharger Noise and Thermodynamic Performance

2020-04-14
2020-01-0426
The trend to simultaneously improve fuel economy and engine performance has led to industry growth of turbocharged engines and as a result, the need to address their undesirable airborne noise attributes. This presents some unique engineering challenges as higher customer expectations for Noise Vibration Harshness (NVH), and other vehicle-level attributes increase over time. Turbocharged engines possess higher frequency noise content compared to naturally aspirated engines. Therefore, as an outcome, whoosh noise in the Air Induction System (AIS) during tip in conditions is an undesirable attribute that requires high frequency attenuation enablers. The traditional method for attenuation of this type of noise has been to use resonators which adds cost, weight and requires packaging space that is often at a premium in the under-hood environment.
Technical Paper

Adaptive Sampling in the Design Space Exploration of the Automotive Front End Cooling Flow

2020-04-14
2020-01-0149
One of the key inputs 1-D transient simulation takes is a detailed front end cooling flow map. These maps that are generated using a full vehicle Three-dimensional Computational Fluid Dynamics (3D CFD) model require expensive computational resources and time. This paper describes how an adaptive sampling of the design space allowed the reduction of computational efforts while keeping desired accuracy of the analysis. The idea of the method was to find a pattern of Design of Experiments (DOE) sampling points for 3D CFD simulations that would allow a creation of an approximation model accurate enough to predict output parameter values in the entire design space of interest. Three procedures were implemented to get the optimal sampling pattern.
Technical Paper

An Iterative Histogram-Based Optimization of Calibration Tables in a Powertrain Controller

2020-04-14
2020-01-0266
To comply with the stringent fuel consumption requirements, many automobile manufacturers have launched vehicle electrification programs which are representing a paradigm shift in vehicle design. Looking specifically at powertrain calibration, optimization approaches were developed to help the decision-making process in the powertrain control. Due to computational power limitations the most common approach is still the use of powertrain calibration tables in a rule-based controller. This is true despite the fact that the most common manual tuning can be quite long and exhausting, and with the optimal consumption behavior rarely being achieved. The present work proposes a simulation tool that has the objective to automate the process of tuning a calibration table in a powertrain model. To achieve that, it is first necessary to define the optimal reference performance.
Technical Paper

Control Oriented Physics Based Three-Way Catalytic Converter Temperature Estimation Model for Real Time Controllers

2020-04-14
2020-01-0904
As automotive emissions become more stringent, accurate control of three-way catalyst temperature is increasingly important for maintaining high levels of conversion efficiency as well as preventing damage to the catalyst. A real-time catalyst temperature model provides critical information to the engine control system. In order to improve emissions and ensure regulatory compliance over a wide range of speed-load conditions, it is desirable to use modelled catalyst temperature as the primary input to catalyst efficiency control strategies. This requirement creates a challenge for traditional empirical models designed for component protection at high speed-load conditions. Simulation results show that a physics aligned model can estimate temperature in all operating conditions, including: cold-start, extended idle, engine shutdown, stop-start events, deceleration fuel shut-off, as well as traditional high load and part load points.
Technical Paper

A Study on the Effect of Different Glasses and Its Properties on Vehicle Cabin during Soaking at Hot Ambient Conditions Using 1D Simulation

2020-04-14
2020-01-0956
Increase in the atmospheric temperature across the globe during summer, increases the heat load in the vehicle cabin, creating a huge thermal discomfort for the passengers. There are two scenarios where these adverse conditions can be a problem during the summer. Firstly, while driving the vehicle in traffic conditions and secondly, when the vehicle is parked under the sun. When the vehicle is exposed to the radiation from the sun for a period, the cabin temperature can reach alarming levels, which may have serious discomfort and health effects on the people entering the vehicle. Although there are options of remote switching on of air conditioners, they are restricted to vehicles having an automatic transmission and availability of the mobile network. So, it is important to explore the possible options which can be used for restricting the external heat load to the cabin.
Technical Paper

Root-Cause Analysis, and Improvement of a Port Fuel Injected V6 Vehicle to Achieve Best-In-Class Sound Quality

2021-08-31
2021-01-1041
This paper will communicate an in-depth investigation uncovering contributing factors defining the desired and undesired acoustic signature of a V6 Vehicle. A transfer path analysis tool is exercised to rank improvement opportunities. These results are used to drive design improvements with the goal of achieving best-in-class sound quality when executed as a system. A cohesive powertrain-vehicle-level acoustic improvement package is executed, improving air induction, intake manifold, both structure and air-core, exhaust-radiated and under-hood-acoustic encapsulation. The acoustic package was validated by jury testing to provide significant refinement enhancement improving predicted 3rd party scores.
Technical Paper

A Comparative Analysis for Six-Phase Motor Configurations

2020-04-14
2020-01-0465
In this paper, a comparison between different six-phase machine topologies is conducted considering their technical performance for automotive applications. Asymmetrical and symmetrical configurations, as well as neutral point connection, are considered as candidate topologies and modelled using vector space decomposition (VSD) and double stator or double dq transformations. In both cases, a generalized model to include an arbitrary phase shift between the windings is presented as well as the effect of the neutral connection on the inverter model. For the selection, the steady-state and post-fault performance are considered in terms of control flexibility, fault-tolerant capability, and dc-link voltage utilization. For the latest, the different topologies are evaluated operating in both linear and overmodulation regions based on space vector modulation (SVM).
Technical Paper

Parametric Modelling and Performance Analysis of HVAC Defroster Duct Using Robust Optimization Methodology

2020-04-14
2020-01-1250
Nowadays development of automotive HVAC is a challenging task wherein thermal comfort and safety are very critical factors to be met. HVAC system is responsible for the demisting and defrosting of the vehicle’s windshield and for creating/maintaining a pleasing environment inside the cabin by controlling airflow, velocity, temperature and purity of air. Fog or ice which forms on the windshield is the main reason for invisibility and leads to major safety issues to the customers while driving. It has been shown that proper clear visibility for the windshield could be obtained with a better flow pattern and uniform flow distribution in the defrost mode of the HVAC system and defrost duct. Defroster performance has received significant attention from OEMs to meet the specific global performance standards of FMVSS103 and SAE J902. Therefore, defroster performance is seriously taken into consideration during the design of HVAC system and defroster duct.
Technical Paper

Investigate Partial Cabin Air Recirculation Strategy to Improve HVAC System’s Heating Performance Using 1D Simulation

2020-04-14
2020-01-0159
In cold weather conditions, cabin heating performance is critical for retaining the thermal comfort. Heat is absorbed from the engine by circulating coolant through the engine water jacket and same will be rejected by the heater core. A variable speed blower is used to transfer heat from the heater core to the passenger compartment through floor ducts. The time taken to achieve comfortable cabin temperature determines the performance and capacity of heating ventilating and air conditioning (HVAC) system. In current automotive field, the engine options are provided to customers to meet their needs on the same vehicle platforms. Hence few engine variants cannot warm the cabin up to customer satisfaction. To improve the existing warm up performance of system, Positive thermal coefficient heater (PTC), electric coolant PTC heater, auxiliary pump etc. can be used which increases the overall cost of the vehicle. During warmup, HVAC system operates in 100% fresh mode.
Technical Paper

Design of Valve Body Integrated Direct Acting Controids

2020-04-14
2020-01-0965
The latest trend in transmission hydraulic controls development ise body integrated direct acting control solenoid, ted by multiple automotive OEMs. The advantages of integrated direct acting control solenoids are key enablers for OEMs to meet more and more stringent fuel economy requirement and competitive environment. In the meantime, there are unique challenges in both designing and manufacturing of such solenoids, due to the fact the solenoid armature can only push the spool valve with limited force and limited stroke. Through analytical methods, this paper explains design guidelines to overcome the challenges and quantifies the impact of design decision to critical functional objectives. Multiple valve design configurations, including both normally low and normally high functionality, are covered in the analysis. Unique manufacturing process concerns are also addressed.
Technical Paper

Thermal Modeling of DC/AC Inverter for Electrified Powertrain Systems

2020-04-14
2020-01-1384
A DC-to-AC main Power Inverter Module (PIM) is one of the key components in electrified powertrain systems. Accurate thermal modeling and temperature prediction of a PIM is critical to the design, analysis, and control of a cooling system within an electrified vehicle. PIM heat generation is a function of the electric loading applied to the chips and the limited heat dissipation within what is typically compact packaging of the Insulated Gate Bipolar Transistor (IGBT) module inside the PIM. This work presents a thermal modeling approach for a 3-phase DC/AC PIM that is part of an automotive electrified powertrain system. Heat generation of the IGBT/diode pairs under electric load is modeled by a set of formulae capturing both the static and dynamic losses of the chips in the IGBT module. A thermal model of the IGBT module with a simplified liquid cooling system generates temperature estimates for the PIM.
Journal Article

LES of Diesel and Gasoline Sprays with Validation against X-Ray Radiography Data

2015-04-14
2015-01-0931
This paper focuses on detailed numerical simulations of direct injection diesel and gasoline sprays from production grade, multi-hole injectors. In a dual-fuel engine the direct injection of both the fuels can facilitate appropriate mixture preparation prior to ignition and combustion. Diesel and gasoline sprays were simulated using high-fidelity Large Eddy Simulations (LES) with the dynamic structure sub-grid scale model. Numerical predictions of liquid penetration, fuel density distribution as well as transverse integrated mass (TIM) at different axial locations versus time were compared against x-ray radiography data obtained from Argonne National Laboratory. A necessary, but often overlooked, criterion of grid-convergence is ensured by using Adaptive Mesh Refinement (AMR) for both diesel and gasoline. Nine different realizations were performed and the effects of random seeds on spray behavior were investigated.
Technical Paper

Acoustic Performance Analysis of Automotive HVAC Duct Designs Using a Lattice-Boltzmann Based Method and Correlation with Hemi-Anechoic Chamber

2020-04-14
2020-01-1263
Acoustic comfort of automotive cabins has progressively become one of the key attributes of passenger comfort within vehicle design. Wind noise and the heating, ventilation, and air conditioning (HVAC) system noise are two of the key contributors to noise levels heard inside the car. The increasing prevalence of hybrid technologies and electrification has an associated reduction in powertrain noise levels. As such, the industry has seen an increasing focus on understanding and minimizing HVAC noise, as it is a main source of noise in the cabin particularly when the vehicle is stationary. The complex turbulent flow path through the ducts, combined with acoustic resonances can potentially lead to significant noise generation, both broadband and tonal.
Technical Paper

Utilizing Engine Dyno Data to Build NVH Simulation Models for Early Rapid Prototyping

2021-08-31
2021-01-1069
As the move to decrease physical prototyping increases the need to virtually prototype vehicles become more critical. Assessing NVH vehicle targets and making critical component level decisions is becoming a larger part of the NVH engineer’s job. To make decisions earlier in the process when prototypes are not available companies need to leverage more both their historical and simulation results. Today this is possible by utilizing a hybrid modelling approach in an NVH Simulator using measured on road, CAE, and test bench data. By starting with measured on road data from a previous generation or comparable vehicle, engineers can build virtual prototypes by using a hybrid modeling approach incorporating CAE and/or test bench data to create the desired NVH characteristics. This enables the creation of a virtual drivable model to assess subjectively the vehicles acoustic targets virtually before a prototype vehicle is available.
X